Click Here for Free Traffic!
Click Here for your Free Traffic!
Google

April 12, 2007

The Bluetooth Name and History




Bluetooth is notable in the high-technology industry in several respects, but in particular its name garners much attention. Most new industry initiatives are known by a name that describes their associated technology or its application and often they quickly become known by an acronym describing the full name. Why wasn't the technology called, for example, "Short-Range Wireless Radio," or SRWR, or some other descriptive name? The answer lies in the heritage (and perhaps the whimsy) of the original inventors. There are numerous histories and accounts of the Bluetooth namesake and how that name came to be chosen; the generally accepted story and facts are cited here.

Harald Blåtand was King of Denmark from approximately A.D. 940 to 985. During his reign King Harald is reported to have united Denmark and Norway and to have brought Christianity to Scandinavia. Apparently "Blåtand" translates, at least loosely, to "Blue Tooth." The origins of this name are uncertain, although it was relatively common during this time for kings to have a distinguishing name. (Some histories say that the name is attributed to Harald's dark complexion; some accounts even indicate that King Harald was known for teeth of a bluish hue resulting from his fondness for blueberries, although this is probably folklore.) For a technology with its origins in Scandinavia, it seemed appropriate to the SIG founders to name the organization that was intended to unify multinational companies after a Scandinavian king who united countries. Thus was born the Bluetooth name, which initially was an unofficial code name for the project but today has become the trademark name (see footnote 1 on page 3) of the technology and the SIG. Figure 1–1 shows the Bluetooth logo, inspired by the initials "H B" for Harald Bluetooth.

Bluetooth wireless communication has engendered tremendous interest since the SIG's formation was announced. Articles in many leading computer-industry trade press publications and in quite a few of the mainstream media have appeared with some frequency. Many analysts such as the Cahners In-Stat Group and the Gartner Group DataQuest now include Bluetooth wireless communications in their studies and forecasts. Between November 1998 and June 2000 at least nine major Bluetooth developers conferences were held in cities including Atlanta, Tokyo, London, Amsterdam, Geneva, Los Angeles and Monte Carlo. The SIG-sponsored conference in December 2000 in Los Angeles attracted over 3,000 attendees, including developers, analysts, customers and others from diverse geographies and industries

Bluetooth wireless technology

Bluetooth wireless technology is a short-range radio technology. Bluetooth wireless technology makes it possible to transmit signals over short distances between telephones, computers and other devices and thereby simplify communication and synchronization between devices. It is a global standard that:

eliminates wires and cables between both stationary and mobile devices;
facilitates both data and voice communication;

offers the possibility of ad hoc networks and delivers the ultimate synchronicity between all your personal devices.

Bluetooth radio uses a fast acknowledgement and frequency-hopping scheme to make the link robust, even in noisy radio environments

The term Bluetooth TM 1 refers to an open specification for a technology to enable short-range wireless voice and data communications anywhere in the world. This simple and straightforward description of the Bluetooth technology 2 includes several points that are key to its understanding:

Open specification: The Bluetooth Special Interest Group (SIG) has produced a specification for Bluetooth wireless communication that is publicly available and royalty free. To help foster widespread acceptance of the technology, a truly open specification has been a fundamental objective of the SIG since its formation.

Short-range wireless: There are many instances of short-range digital communication among computing and communications devices; today much of that communication takes place over cables. These cables connect to a multitude of devices using a wide variety of connectors with many combinations of shapes, sizes and number of pins; this plethora of cables can become quite burdensome to users. With Bluetooth technology, these devices can communicate without wires over a single air-interface, using radio waves to transmit and receive data. Bluetooth wireless technology is specifically designed for short-range (nominally 10 meters) communications; one result of this design is very low power consumption, making the technology well suited for use with small, portable personal devices that typically are powered by batteries.

Voice and data: Traditional lines between computing and communications environments are continually becoming less distinct. Voice is now commonly transmitted and stored in digital formats. Voice appliances such as mobile telephones are also used for data applications such as information access or browsing. Through voice recognition, computers can be controlled by voice, and through voice synthesis, computers can produce audio output in addition to visual output. Some wireless communication technologies are designed to carry only voice; others handle only data traffic. Bluetooth wireless communication makes provisions for both voice and data, and thus it is an ideal technology for unifying these worlds by enabling all sorts of devices to communicate using either or both of these content types.

Anywhere in the world: The telecommunications industry is highly regulated in many parts of the world. Telephone systems, for example, must comply with many governmental restrictions, and telephony standards vary by country. Many forms of wireless communications are also regulated; radio frequency spectrum usage often requires a license with strict transmission power obligations. However, some portions of the available radio frequency spectrum may be used without license, and Bluetooth wireless communications operate within a chosen frequency spectrum that is unlicensed throughout the world (with certain limitations and restrictions that are discussed later in the book). Thus devices that employ Bluetooth wireless communication can be used unmodified, no matter where a person might be.

The Bluetooth short-range wireless technology is ideally suited for replacing the many cables that are associated with today's pervasive devices. The Bluetooth specification ([BTSIG99], hereafter referred to as the specification) explicitly defines a means for wireless transports to replace serial cables, such as those used with modems, digital cameras and personal digital assistants; the technology could also be used to replace other cables, such as those associated with computer peripherals (including printers, scanners, keyboards, mice and others). Moreover, wireless connectivity among a plethora of fixed and mobile devices can enable many other new and exciting usage scenarios beyond simple cable replacement. In this book we explore various applications of the technology.

Important characteristics and applications of Bluetooth wireless communications are examined in detail in this book. The Bluetooth specification is explained in easy-to-understand terms with the benefit of the authors' experiences, gained while participating in its development. If the Bluetooth wireless technology succeeds in the marketplace to the extent predicted by many analysts, it has the potential to change people's lives and the way that people think about and interact with computing and communication devices. Understanding this emerging technology can benefit not only industry professionals, but also consumers who can use and obtain value from it.

No comments: